On the Persistence Properties of Solutions of Nonlinear Dispersive Equations in Weighted Sobolev Spaces

نویسنده

  • J. NAHAS
چکیده

We study persistence properties of solutions to some canonical dispersive models, namely the semi-linear Schrödinger equation, the k-generalized Korteweg-de Vries equation and the Benjamin-Ono equation, in weighted Sobolev spaces Hs(Rn) ∩ L2(|x|ldx), s, l > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistence of Solutions to Nonlinear Evolution Equations in Weighted Sobolev Spaces

In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces X s,θ, for s ≥ 2θ ≥ 2 and the initial value problem associated with the nonlinear Schrödinger equation is well-posed in weighted Sobolev spaces X s,θ, for s ≥ θ ≥ 1. Persistence property has been proved by approximation of the solutions and using a pri...

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Decay Properties for Solutions of Fifth Order Nonlinear Dispersive Equations

We consider the initial value problem associated to a large class of fifth order nonlinear dispersive equations. This class includes several models arising in the study of different physical phenomena. Our aim is to establish special (space) decay properties of solutions to these systems. These properties complement previous unique continuation results and in some case, show that they are optim...

متن کامل

Analysis and Pde on Metric Measure Spaces: Sobolev Functions and Viscosity Solutions

ANALYSIS AND PDE ON METRIC MEASURE SPACES: SOBOLEV FUNCTIONS AND VISCOSITY SOLUTIONS Xiaodan Zhou, PhD University of Pittsburgh, 2016 We study analysis and partial differential equations on metric measure spaces by investigating the properties of Sobolev functions or Sobolev mappings and studying the viscosity solutions to some partial differential equations. This manuscript consists of two par...

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010